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A B S T R A C T

With the rapid proliferation of images on e-commerce platforms today, embracing and integrating versatile
information sources have become increasingly important in recommender systems. Owing to the heterogeneity
in information sources and consumers, it is necessary and meaningful to consider the potential synergy between
visual and textual content as well as consumers' different cognitive styles. This paper proposes a multi-view
model, namely, Deep Multi-view Information iNtEgration (Deep-MINE), to take multiple sources of content (i.e.,
product images, descriptions and review texts) into account and design an end-to-end recommendation model. In
doing so, stacked auto-encoder networks are deployed to map multi-view information into a unified latent space,
a cognition layer is added to depict consumers' heterogeneous cognition styles and an integration module is
introduced to reflect the interaction of multi-view latent representations. Extensive experiments on real world
data demonstrate that Deep-MINE achieves high accuracy in product ranking, especially in the cold-start case. In
addition, Deep-MINE is able to boost overall model performance compared with models taking a single view,
further verifying the proposed model's effectiveness on information integration.

1. Introduction

The amount and variety of data are increasing exponentially in to-
day's online marketplaces, of which multimedia and user-generated
content account for a large proportion.1 While consumers benefit from
such rich and helpful information, they also face an information over-
load problem in their online shopping processes [7,22]. To alleviate this
problem, some technological tools have been developed to assist con-
sumers in product search and decision-making. Recommender systems
are one of the most widely applied decision aids that aim to provide
personalized recommendation services for consumers. Recommender
systems conduct in-depth mining of historical records, infer consumer
preferences from the data and recommend products that consumers
may like [1].

Plenty of efforts have been devoted to investigating different types
of data, e.g., consumers' profile, online reviews, product descriptions,
and social network to enhance recommendations [12,33,36,48],
whereas images have not been comprehensively utilized yet because of
the complexity of image processing and the difficulty of integrating
images into recommendations. However, over the past few years, the
advancement of deep learning techniques has made it possible to have a
deeper understanding of multimedia content, in which some studies

attempt to extract valuable information from visual data through deep
neural networks [14,27,51].

For online consumers, their first impressions are usually derived
from the visual appeal of products [23]. The perceptual and persuasive
advantages of images have been well demonstrated in consumer be-
havior research [43]. Product images provide us with visual cues, re-
duce perceived risk, possess high attention-grabbing qualities and are
remembered better [9,54]. Furthermore, when consumers make pur-
chase decisions online, they naturally consider multiple sources of in-
formation together, e.g., images, descriptions, and reviews, meaning
that they take a multi-view perspective.

Concerning visual and textual content, prior studies have found that
visual messages are complements, but not alternatives to textual con-
tent [31]. For instance, a dress may have a description like “floral
printed, round neck, long sleeve, two-side pockets”. Though helpful, the
description does not provide details of floral pattern and where exactly
the pockets are located, which a consumer prefers to know. Meanwhile,
an image could clearly show the relevant information to fill the in-
formation gap, which is particularly desirable for online shoppers tar-
geting experience goods, such as clothes. However, some features (e.g.,
fabrics) can only be accurately described in text and are unlikely to be
inferred from images. Therefore, it is deemed intuitive and meaningful
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to combine image and textual content from such a multi-view per-
spective to effectively enhance the quality of recommendations.

Apart from the information heterogeneity caused by images and
texts, there is also heterogeneity in consumers due to their differences
in cognitive styles. Cognitive style refers to the way people think,
perceive and memorize information, which significantly influences
people's behavior and decision-making process [29,49]. There are some
studies discussing the cognitive style model, of which the Verbal-Ima-
gery dimension in Cognitive Style Analysis in [45] is most closely re-
lated to our research. The Verbal-Imagery dimension describes in-
dividual's mode of information representation in memory during
thinking. Concretely, affective users are more sensitive to visual con-
tent, while cognitive users are more sensitive to verbal clues [50].
Multi-view-based recommendation is expected to improve further by
incorporating cognitive style heterogeneity and information hetero-
geneity.

Leveraging the heterogeneities in product content and users (users
and consumers are used interchangeably in the following content) in
recommender system design involves a twofold challenge. First, the
heterogeneity in product content requires different modeling techni-
ques to ensure an appropriate representation for each view of content,
and the heterogeneity in users requires reflecting different attentive
preferences of users on the respective content. Second, an overall me-
chanism needs to be developed to formulate a unified representation
that embraces various representations for the respective content with
users' diversified cognition styles. Note that, although some attempts
have discussed the complementary relationship between visual and
textual views in a general manner [31], the challenge has not be ade-
quately addressed, which motivates our work.

This paper proposes a multi-view recommendation model, namely,
Deep Multi-view Information iNtEgration (Deep-MINE), where visual
and textual content are leveraged with representation learning techni-
ques and mapped into a unified latent space. Furthermore, a cognition
factor is introduced to characterize the heterogeneity in users' cognitive
styles. Then, the embedding approach is deployed to automatically
learn the interaction between visual and textual content enhanced with
individualized cognitive styles. The effectiveness of Deep-MINE is ver-
ified through extensive experiments. It is also worth mentioning that,
Deep-MINE shows merit in dealing with the cold-start problem to some
extent by taking a comprehensive multi-view perspective.

The rest of the paper is organized as follows. Section 2 reviews the
related literature. Section 3 presents the model framework and for-
mulation, as well as the parameter learning process and recommenda-
tion procedure. The data experiments in Section 4 demonstrate the
outperformance of the proposed model over baselines. The conclusion
and future work are presented in Section 5.

2. Related work

2.1. Recommender systems

Generally, recommendation models can be grouped into three ca-
tegories: content-based models, collaborative filtering (CF) and hybrid
models [1]. Content-based models recommend items similar to those
users have liked previously based on item or user characteristics. CF
models recommend items according to the similarities among users or
items. Matrix factorization (MF) [24] is an effective CF-based method.
MF decomposes the feedback matrix into two low-dimension matrices,
i.e., the item latent factor matrix and user latent factor matrix, and the
interaction between the two matrices represents the preference score.
However, it suffers from the cold start problem, as the latent factors can
hardly be inferred, if there is no historical feedback available. Hybrid
models that combine the two methods above have been widely used,
which consider content information as well as collaborative pre-
ferences. The content information includes the user profile, item de-
scriptions, social relations and social network [12,33,36,48]. As an

important source of user-generated content, review texts are also uti-
lized to elicit user preferences. For instance, HFT proposes to combine
latent rating dimensions with latent review topics learned by topic
models to make latent factors more interpretable [38]. CTR re-
commends scientific articles with similar ideas in online researcher
communities [52]. Liu et al. [32] extract consumer opinions from re-
views with aspect-based opinion mining and make recommendations
based on extracted opinions.

Targeting recommendation objectives, recommender systems could
be divided into point-wise recommendation and pairwise re-
commendation. Point-wise recommendation was widely used in the
early days such as for movie recommendations, aiming to predict the
rating or score for each user-item pair. By contrast, pairwise re-
commendation aims to optimize the ranking for potential candidates
rather than focusing on the absolute rating scores, which is more rea-
listic. One of the most influential studies is the work by Rendle et al.
[44], which proposes a generalized Bayesian Personalized Ranking
(BPR) framework and has been widely applied in top-n recommenda-
tion [58], session based recommendation [17], group-based re-
commendation [42] and point-of-interest recommendation [8].

However, existing efforts did not satisfactorily incorporate visual
information, such as images. Furthermore, owing to the complexity of
image processing, how to organically integrate images with other in-
formation to facilitate recommendation needs to be explored.

2.2. Image-aware recommendation

As mentioned earlier, images are influential and necessary in con-
sumer decision-making on e-commerce platforms. There are some stu-
dies that apply visual signals to item recommendations in the field of
computer science. In the early days, image-based recommendations
mainly focus on image retrieval with feature engineering [5,21,35].
Considering the wide acceptance of deep learning in industrial and
academic fields, some studies manage to leverage deep learning tech-
niques to take advantage of image and textual information in re-
commendation models [57]. Wang et al. [53] prove that deep learning-
based models outperform traditional topic-based models. Some re-
presentative models include VBPR [15], VPOI [55] and CKE [56]. VBPR
represents each image with a 4096-dimension feature vector, which is
extracted from a pre-trained image classification model [26] and adds
an embedding layer on top of it to obtain a dense item representation.
Similarly, Wang et al. [55] proposes a POI recommendation model that
utilizes a pre-trained VGG-16 model. Nevertheless, due to the differ-
ences of image contexts, a pre-trained model in a general-purpose
image classification task may not well fit specific recommendation
tasks. Moreover, there is usually a lack of well-recognized and pre-
defined labels for images, therefore supervised models are not applic-
able either.

There are also some customized deep neural networks for image-
aware recommendations. Lei et al. [28] propose a dual-net deep net-
work to map the images and preferences of users into the same latent
semantic space. Deepstyle [34] considers style features as well as ca-
tegory information of item to fully account for visual signals. CKE [56]
proposes a collaborative knowledge embedding model that leverages
image, text and structural information in a single Bayesian model. Vi-
sual embedding and textual embedding are implemented through two
auto-encoder structures, i.e., stacked convolutional auto-encoder
(SCAE) and stacked denoising auto-encoder (SDAE). However, the re-
lationship between different types of knowledge is not well addressed,
and the textual content originates from external knowledge bases,
which is generally inaccessible for the online shopping recommenda-
tion context. In addition, some conceptual multi-view frameworks are
highlighted in consumer behavioral and psychological research
[20,30,31], which however lack technical treatments.
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2.3. Representation learning

Representation learning is an effective tool that has been widely
used in machine learning. The key idea of representation learning is to
seek a low-dimensional embedding of data while preserving different
discriminative factors of variation behind data. Several kinds of neural
networks have been proposed to extract features from unstructured
data, including undirected models such as the Deep Bayesian network
(DBN) [18], Restricted Boltzmann Machine (RBM) [47], and directed
models, such as the auto-encoder [4]. A stacked auto-encoder [41] is a
kind of unsupervised model with multiple layers of auto-encoders in
which the output of each layer is wired to the input of the successive
layer. Aiming to reconstruct the original input as well as to compress
the original high dimension input, it is composed of encoder and de-
coder parts. To constrain the representation from duplicating the input,
auto-encoders are usually regularized and several variants of auto-en-
coders are proposed, including Contractive Auto-encoders (CAE) and
Denoising Auto-encoder (DAE) [53,56]. For images, the Convolutional
Neural Network (CNN) shows considerable advantages as it preserves
the input's neighborhood relations and spatial locality in their latent
higher-level feature representations [27]. Thus the convolutional
stacked auto-encoder is a natural choice for image feature representa-
tion in this study.

The embedding approach is also widely adopted for information
representation. To overcome the adaptation problem, an embedding
layer is usually imposed on top of features extracted from pre-trained
deep learning models to obtain a dense feature representation [15,55].
Based on previous achievements, this study adopts the auto-encoder
structure to obtain a latent representation for each view of information
and designs an embedding approach to exploring the interaction of
multi-view features.

2.4. Cognitive styles

In the research field of psychology and education, a variety of re-
search studies have discussed the constructs, theories and models re-
lated to cognitive styles [25]. Messick [40] defines cognitive style as
stable attitudes, preferences or habitual strategies that determine in-
dividuals' modes of perceiving, remembering, thinking, and problem
solving. Cognitive style has been widely applied in personnel selection,
career guidance, task design, team composition, and conflict manage-
ment [2,6]. Nevertheless, to our knowledge, few studies consider users'
different cognitive styles on an e-commerce platform.

According to Riding and Cheema [45], an individual's cognitive
style can be positioned on two orthogonal dimensions, namely, Wholist-
Analytic and Verbal-Imagery. The Verbal-Imagery dimension describes
individuals' mode of information representation in memory. Verbalizers
are those who tend to process information in words, and they learn
better from textual input, while visualizers learn better from pictorial
presentation [46]. A user's position on this dimension is of critical im-
portance in deciding the relative weights of image and textual content
in online purchase decisions.

Previous measurements of cognitive styles mainly focus on self-re-
port measures, which may not be effective in certain cases due to the
questionable reliability and validity [10]. Furthermore, on a real on-
line-shopping platform, hundreds of thousands of consumers browse
product information, make purchase decisions and write product re-
views from time to time. Hence, from an operational point of view, it is
extremely difficult to explicitly assess these consumers' cognitive styles
through the traditional measurement of cognitive style. In response to
the call for utilizing multiple methods [3] and based on the similar idea
in [13] where online user's cognitive styles are inferred in a Bayesian
learning process through each user's clickstream data, this paper pro-
poses a data-driven measurement to learn an individual's cognitive style
through observations of a consumer's historical purchase behavior.
Furthermore, the extracted individualized cognitive styles are

incorporated to facilitate personalized recommendations, which con-
tributes to the field of recommender systems.

3. Model framework and computational methods

3.1. Problem formulation

Focusing on recommendation in the online shopping setting, in a
multi-view information context, let J be the set of all items concerned;
for each item j, it has at least one imageMj, a description Dj, and a set of
reviews Rj1, Rj2,… , Rjm. Let I be the set of all users; for each specific
user i, his/her purchase history is known, and all users' purchase his-
tories constitute an adjacency matrix X, in which Xij=1 means that
user i purchased item j, and Xij=0 otherwise.

Generally, a user purchase can be treated as a kind of implicit
feedback [19], as it indirectly reflects the user's preference. Without
loss of generality, assume user i bought item j instead of item j′ (j, j′ ∈ J),
then user i implicitly prefers j to j′, denoted as j> ij′ [15]. Consistently
with [44], item pairs are used as training data in this paper. More
specifically, suppose that for user i, the set of all the items he/she
bought is denoted as Ji+ (Ji+⊂ J), the data set can be formalized as
S={(i, j, j′)| j ∈ Ji+, j′ ∈ J− Ji+}, or equally, S={(i, j, j′)|Xij=1,
Xij′ = 0}. Therefore, the recommendation task is to derive a persona-
lized list for each user based on those items which he/she has not
provided any feedback.

3.2. Deep-MINE model

The overall model of Deep MINE consists of three parts: information
representation, cognition layer and information integration. The model
framework is as shown in Fig. 1.

3.2.1. Multi-view information representation
This subsection aims to map heterogeneous information into a

unified latent space, in which a latent factor representing the source
information is obtained through a deep neural network.

For images, a 6-layer stacked convolutional auto-encoder network
[37] is designed. On the one hand, convolutional networks could pre-
serve the input's neighborhood relations and spatial locality in their
latent higher-level feature representations and show a superior perfor-
mance in image classification related tasks [14,51]. On the other hand,
the auto-encoder structure could preserve as much discriminative in-
formation as possible. For unstructured texts, a bag-of-word re-
presentation for each item is obtained and a 4-layer stacked auto-en-
coder network is designed to obtain its latent representation through
layer-wise dimension reduction [41,53]. The number of layers for the
auto-encoder networks is consistent with previous literature [53,56],
and some empirical results for different number of layers are discussed
in Section 4.3.5. Fig. 2 and Fig. 3 show the two types of auto-encoder
networks, and the generation process of latent representations is de-
tailed as follows.

For stacked convolutional auto-encoder, layers 1, 2, 5, and 6 are
convolutional layers and layers 3 and 4 are fully connected layers.
Suppose that an input image of item j is denoted as M0. For each layerl,
let each column k of its weight parameters Wl follows a normal dis-
tribution, namely, Wlk~N(0,λw−1I), and let bias parameters bl~N
(0,λb−1I), where I refers to the identity matrix. If l=1, 2, 5, 6, then the
output of each layer l depends on the convolution operation of the
network parameters and output of the last layer, namely,
Ml= σ(Wl ∗ Ml−1+ bl), where ∗ represents convolution operation. If
l=3, 4, then Ml= σ(Wl ∙Ml−1+ bl), where ∙ represents matrix multi-
plication. The middle layer output M3 is used as the visual feature re-
presentation for item j. As implied by the name auto-encoder, the input
is reconstructed at the last layer. To summarize, the encoder network
and decoder, sharing the same weight matrices, are represented as Eq.
(1) Eq. (2), respectively.
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= = + + +M g M W b W W W M b b b( , , ) ( ( ( ) ) )3 1 0 3 2 1 0 1 2 3 (1)

= = + + +M g M W b W W W M b b b( , , ) ( ( ( ) ) )6 1 3 1 2 3 3 4 5 6 (2)

For the stacked auto-encoder, suppose the textual description of
item j is denoted as D0. For each layer l, let each column k of its weight
parameters Ql follow a normal distribution, namely Qlk~N(0,λq−1I),
and let bias parameters cl~N(0,λc−1I), where I is the identity matrix.
The output of each layer l depends on the weight matrix, bias

parameters and the output of the last layer, namely,
Dl= σ(Ql ∙Dl−1+ cl). The middle layer output D2 is used as the texual
representation for item j. Therefore, the encoder network and the de-
coder are represented as Eq. (3) and Eq. (4), respectively.

= = + +D g D Q c Q Q D c c( , , ) ( ( ) )2 2 0 2 1 0 1 2 (3)

= = + +D g D Q c Q Q D c c( , , ) ( ( ) )4 2 2 1 2 2 3 4 (4)

Note that, as reviews are also textual, a similar 4-layer stacked auto-
encoder is built for R0 as that for D0, with R2= g3(R0,N, t),
R4= g3′(R2,N, t). Furthermore, to ensure that we obtain an effective
representation for each view of information, the Mean Square Error
(MSE) loss functions L1, L2, L3 are introduced with the aim of mini-
mizing the reconstruction error, and regularization terms are also
added to control the magnitude of the network parameters (i.e., Eq.
(5)–(7)), where λm, λd, λr are hyperparameters and λw, λb, λq, λc, λn, λt
are parameters of the corresponding normal distributions.
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3.2.2. Cognition layer
As mentioned above, according to the Verbal-Imagery dimension of

cognitive style, users are heterogeneous in information processing,
implying that some users may value images more, while others may pay
more attention to texts. In [10], cognitive style is obtained from lab
experiments where participants are asked to complete a survey on
certain tasks. In a real online shopping environment, however, the
consumers are usually in hundreds of thousands, i.e., it is extremely
difficult to explicitly assess their cognitive styles through the above
methods. Therefore, we propose an integrated model to learn their
cognitive styles in a data-driven fashion from users' implicit feedback.
i.e., purchase information. In this spirit, a cognition layer is added in
the Deep-MINE model architecture. Specifically, a 3-dimension vector is
imposed on three different views, i.e., images, descriptions and reviews,
to represent an individual's cognitive style, which is a reasonable ex-
tension on Verbal-Imagery dimension, where a textual description is
separated from a textual review, because they are quite different in
terms of the content, position and form of presentation in the e-com-
merce context.

Concretely, user i′s cognition factor is denoted as [ai1,ai2,ai3]. From
Section 3.2.1, as the latent representations for the three types of in-
formation are denoted as M3, D2, R2, the perceived information for user
i is moderated as [ai1 ∙M3,ai2 ∙ D2,ai3 ∙ R2]. The value of the cognition
factor is to be learned during the model training phase.

3.2.3. Multi-view information integration
With user perceived information available, an integration module is

proposed to build a full picture of an item from a multi-view perspec-
tive. First, a stacking layer (concatenation) of different representations
is formulated as Eq. (8), where c(.) represents the concatenation. Then,
an embedding layer is deployed to transform the concatenated factor
into a lower dimension factor as Eq. (9).

= c a M a D a Rf ( , , )i i i
c

1 3 2 2 3 2 (8)

= Wf ffuj
c (9)

Notably, this embedding operation is deemed to be a key step to
enable reorganizing and utilizing available information in the following
steps [15]. Similar to the cognition factor, the specific weights in Wfu

are not known to us beforehand and need to be learned in the model
training phase, which is natural, as the integration mechanism is highly
dependent on the specific context. So far, fj can be deemed as content
factor, as all three pieces of information have been integrated together.

Apart from images, descriptions and reviews, there may exist ad-
ditional information about the item outside the e-commerce platform,
which could potentially affect the consumer purchase behavior.
Therefore, factor vj is introduced to capture the hidden information.
Eventually, the aggregated item factor itemj consisting of hidden in-
formation and content factor is deemed to represent the item compre-
hensively, which is shown in Eq. (10)

=item c (v , f ).j j j (10)

3.2.4. User preference
Based on previous discussions, for recommendation purposes, the

preference xij of user i on item j can be formulated as Eq. (11), where vj
and fj represent the hidden information and content factor of an item as
introduced above, ui and θi are the user perception factors corre-
sponding to vj and fj, and αi and βj denote user bias and item bias, re-
spectively:

= + + +x u v f .ij i j i
T

j i
T

j (11)

To combine all the parts above, the preference of user i on item j
could be formulated as Eq. (12). Consistently with [44], the probability
of user i preferring item j to item j′ can be formulated with a sigmoid
function as Eq. (13)

= + + +x u v W c a M a D a R( ( , , ))ij i j i
T

j i
T

fu i i i1 3 2 2 3 2 (12)

> = = +P j j x x x x( ) ( ) 1/(1 exp( ( ))).i ij ij ij ij (13)

3.2.5. Objective function
To optimize the whole model and learn the model parameters, an

objective function is formulated in this subsection. As Deep-MINE has
two major parts, namely, representation learning and preference
learning, the objective function performs two tasks. One task is to
maximize the logarithm of the ranking probability, i.e.,

ln x x( )i j j S ij ij( , , ) . The other task is to obtain an effective in-
formation representation. Hence the loss functions of the auto-encoder
networks, i.e., L1+ L2+ L3, in information representation layer need to
be included. In addition, regularization terms for related model para-
meters are added to avoid overfitting. Overall, the objective function
can be formulated as Eq. (14), where S is the training set consisting of
triple (i, j, j′) as explained in Section 3.1. λm, λd, λr, λθ, λβ, λWfu

are hy-
perparameters controlling the relative weights of different components
in the objective function:
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Considering the complexity and nonlinear relationships of para-
meters, it is impossible to find a closed form solution [56]. An iterative
algorithm is developed, as discussed in the next subsection.

3.3. Parameter learning

As the objective function is based on pairwise items, for each user,
there are many more items for which he/she has not provided any
feedback (i.e., purchase) than those that he/she has purchased.
Therefore, a negative sampling strategy [56] is adopted to randomly
sample one item pair from the training set S each time and update the
corresponding parameters with stochastic gradient descent.

To obtain the gradient with respect to each parameter, back pro-
pagation is used during each update. The update formulas for the
parameters are shown in Eqs. (15)–(22), where xijj′ =− (xij− xij′), lr
denotes the learning rate, t denotes the batch number.

f a M a D a R
a M

( , , )
( )

i i i
i

1 3 2 2 3 2
1 3

is a sparse matrix with the first n rows being an
identity matrix and the remaining m+ k rows being zeros, where n, m,
k are the latent factor dimensions of images, descriptions and reviews.
Both g M W b

W
( , , )

l
1 0 and g g M W b

W
( ( ( , , ))

l
1 1 0 can be directly derived with back

propagation, which are not expanded here for simplicity. The update
formulas for N, Q, c, t are omitted, as they could be derived in a similar
fashion as W, b. The algorithmic details of parameter learning process
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are provided in Algorithm 1
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Algorithm 1. Deep-MINE parameter learning.

3.4. Prediction and recommendation

An online recommendation for user i can be conducted as follows.
For each item j, following the Deep-MINE framework, given its content
information and user characteristics, the preference xij could be as-
sessed using Eq. (12). Then, a sorting operation is performed for xijs,
and the top K items that constitute the recommendation list are se-
lected. The framework is illustrated in Fig. 4.

4. Empirical study and results

4.1. Data description

To demonstrate the effectiveness of the proposed model, two cate-
gories of real-world datasets were obtained from Amazon.com, namely,
Women's Dresses and Baby Clothes. Both Women's Dresses and Baby
Clothes are typical experience goods, for which images and reviews are
well recognized to be highly informative, complementing the product
descriptions for consumer decision-making. For the Baby Clothes da-
taset, only image features are available (http://jmcauley.ucsd.edu/
data/amazon/) [16,39]. Thus, the image auto-encoder network is ap-
plied to the Women's Dresses dataset.

The data preprocessing is conducted as follows. As a product usually
had 3–4 images to show it from different angles, without loss of gen-
erality, one image was randomly chosen as the input. For textual con-
tent, a bag-of-words approach was used and words with high frequency
were kept in the vocabulary. To control the dimension of the input data
and prevent the negative impact of misspelled words or typos, words
that appeared less than 10 times were deleted for the Women's Dresses
dataset and words that appeared less than 100 times were deleted for
the Baby Clothes dataset (the corpus of the Baby Clothes dataset is
much larger than that of the Women's Clothes dataset, which explains
the different thresholds), which is consistent with [52,53]. A stop words
list was also kept to delete words, such as of and in. The text pre-
processing steps included capital words conversion, word stemming and
stop words deletion. Finally, 1461 and 1894 words were retained for
the descriptions and reviews in the Women's Dresses dataset. 1516 and
1502 words were retained for the Baby Clothes dataset. Note that, most
consumers would not read all of the reviews and reviews with helpful
votes were usually displayed with priority by the platform. Hence, we
only kept the reviews with helpful votes for preprocessing. An example
of product content is presented in Table 1.

For both datasets, we ensured that each consumer had at least two
feedbacks, i.e., one for the training set and one for the test set, as the
proposed model needs to infer consumer preferences from one's pur-
chase history. All products were kept in the dataset, including products
that had few or no feedbacks (i.e., new products released to the
market), which are known as cold start products. Initially, the Women's
Dresses dataset had 256,749 feedbacks and the Baby Clothes dataset
had 32,419 feedbacks. After data cleaning and preprocessing, we finally
had 5981 users and 2579 products for the Women's Dresses dataset and
8018 users and 3625 products for the Baby Clothes dataset.

For each user, one feedback was randomly chosen for the test set,
and the other feedbacks were chosen for the training set [15,56]. Fur-
thermore, to demonstrate Deep-MINE's performance under cold start
settings, cold start test sets including products with different sparsity
levels were also extracted from the test set, which will be elaborated in
Section 4.3.3.

4.2. Evaluation metrics and baseline models

Aligned with the prior literature, the Area Under the ROC
Curve (AUC) [15,44] and Hit Ratio [58] were chosen as two
metrics for performance evaluation. The AUC is defined as

= >AUC x x( )I i J i j j S ij ij
1 1

( , , ) , and δ(∙) is an indicator function
that equals 1, if xij > xij′ is true; otherwise it is 0. The AUC measures
the ratio of correctly predicted product pairs to the total product pairs
for all consumers. S is defined in the formulation in Section 3.1. The hit
ratio is also widely used in recommender system evaluation [57]. The
hit ratio is measured as the percentage of users who have at least one
correctly recommended product in the top-K recommendation list. A
higher hit ratio reflects a higher recommendation accuracy. In the
following experiments, different K values were tested to prove the ro-
bustness of the proposed model.
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To show the superior performance of Deep-MINE, the following
baseline models were chosen for comparison.

(1) BPRMF: The pairwise Bayesian Personalized Ranking model pro-
posed in [44], which is a state-of-the-art ranking based model only
utilizing implicit feedback data.

(2) CDL: The Collaborative Deep Learning model proposed in [53]
processes description content with a stacked denoising auto-en-
coder based on the probabilistic matrix factorization framework.

(3) VBPR: The Visual Bayesian Personalized Ranking model proposed
in [15], i.e., based on BPRMF, utilizes image features from pre-
trained image classification model.

(4) CKE: The Collaborative Knowledge Base Embedding model, i.e., an
extension of CDL proposed in [56], incorporates structural, textual
and visual content. As no structural information is available in our
context, descriptions and images are considered here in im-
plementation.

A validation set sampled from the training set was used to find the
optimal hyperparameters for the Deep-MINE model and all the baseline
models above. The hyperparameter settings of the Deep-MINE model
are listed in Table 2. Based on the previous literature [56], the node
numbers of the latent layer for images, descriptions and reviews were
set the same, and experiments under different parameter settings were
also conducted in Section 4.3.5 to justify the model's robustness.

4.3. Experiment results

4.3.1. Performance comparison of Deep-MINE and baseline models
Deep-MINE and baseline models were evaluated under different

settings in this subsection. All the models were trained using the same
strategy as introduced above. To make a fair comparison, the factor
numbers of hidden information and integrated content were kept the
same for Deep-MINE and baseline models. The AUC results are shown in
Fig. 5. For the Women's Dresses dataset, the AUC of Deep-MINE was no
less than 0.85, meaning that more than 85% of the pairwise rankings
were predicted accurately. With total factor number increasing from 50

to 200, the Deep-MINE model consistently performed better than
baseline models. BPRMF performed the worst as it utilized only the
feedback data without considering content information. CKE had the
second-best performance because it utilized more information com-
pared with VBPR and CDL. Not surprisingly, VBPR had a slightly better
performance than CDL as image features are more informative than
descriptions for products, such as clothes.

To examine the robustness of Deep-MINE, experiments were also
conducted on the Baby Clothes dataset (Fig. 5(b)). Deep-MINE still had
a better performance than all the baselines. A notable difference was
that VBPR also achieved a good performance with a slightly lower AUC
than Deep-MINE (0.8025 vs 0.8030). On this dataset, as the visual input
was a 4096-dimension feature vector instead of raw images, the design
of image convolutional auto-encoder in the Deep-MINE model was
deprecated. Still, the Deep-MINE performance was satisfactory, using
the mechanism of multi-view information integration. However, the
high-dimensional visual feature may have a dominant effect over the
other two views, which may explain the relatively poor performance of
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model
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predic!on
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User 
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Offline module
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Fig. 4. Framework for Deep-MINE recommender system.

Table 1
An example of product content.

Image Description Review

95% Polyester 5% Spandex. Hand wash; dry flat; Model Wearing Size 1×. Height:
5′9″ Waist:37.5″ Hips: 42″ Bust:34″ Super soft fabric defines this curve-loving dress,
while a surplice neckline and billowing silhouette add gentle whimsy.

Looks just like Brigette Bailey and Lovestitch style but the material was really thin
and did not drape as nicely. The multi blue color is attractive and the price was
good but I'm spoiled on the other two brands. And will stick with those.

Table 2
Hyperparameter settings.

Deep-MINE model Hyperparameter setting

Image auto-encoder Nm1= 64, Nm2= 64, Nm3= 100,

=m img dim
1

# _
Description auto-encoder Nd1= 400, Nd2= 100, =d des dim

1
# _

Review auto-encoder Nr1=400, Nr2= 100, =r rev dim
1

# _
Regularization and variance

parameters
λθ=0.1, λβ=0.001, λWfu

=0.001,

=w W dim
1

# _ , =q Q dim
1

# _ , =n N dim
1

# _ ,

λb= λt= λc=0

Note: Nm1, Nm2, and Nm3 refer to the number of hidden units for layers 1, 2,
and 3 in the image auto-encoder, respectively; img_dim, des_dim, and rev_dim
refer to the dimensions of image, description and review input, respectively;
#W_ dim , #Qdim, and #Ndim refer to the dimensions of corresponding weight
matrix W, Q, and N, respectively.
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CDL and CKE. Consistently, BPRMF performed the worst in all the
baselines. As the model performance was not sensitive to the factor
number on both datasets, the factor number was fixed at 100 in the
following experiments.

In addition to the AUC, the hit ratio is another metric that measures
the ranking-based recommendation accuracy. When K varied from 50
to 200, the hit ratio was plotted in Fig. 6. On the Women's Dresses
dataset, Deep-MINE beaten all the other baseline models and achieved a
performance similar to that of CKE. On the Baby Clothes dataset, Deep-
MINE performed the best across all K levels.

Through the above results, Deep-MINE revealed its effectiveness for
integrating information in comparison with other content-aware re-
commendation models. In addition, Deep-MINE also showed a sig-
nificant improvement over BPRMF, which signifies the considerable
advantages of incorporating content information into recommendation
models.

4.3.2. Effect of multi-view information integration
As mentioned previously, Deep-MINE can organically integrate

multi-view information to enhance recommendations. Therefore, Deep-
MINE (i.e., the entire model) was further examined with its degenerated
forms (i.e., single models), where one view from only a single in-
formation source was considered, namely, Image-MINE, Description-
MINE and Review-MINE. From Fig. 7 and Fig. 8, it is clear that the
entire model performed better than single models on the AUC and hit
ratio. Concretely, Review-MINE performed better than the other single
models, which may signify that reviews contain more valuable in-
formation compared with information provided by e-retailers, such as
images and descriptions. Image-MINE and Description-MINE had
slightly different performances on the two datasets. On the Women's
Dresses dataset, product images mattered more, while for the Baby

Clothes dataset, descriptions mattered more, possibly because baby
clothes were more functional than women's dresses, and therefore,
descriptions contained more relevant and decisive information for
consumers. From an overall point of view, the proposed Deep-MINE
model showed its advantage by organically integrating multi-view in-
formation. Furthermore, all the Deep-MINE related models performed
significantly better than the BPRMF model.

4.3.3. Performance on cold start datasets
As Deep-MINE leverages multi-view content information to make

recommendations, it is expected to suffer less in cold start product
settings, i.e., products having no or few purchase feedbacks could
hardly be recommended. To verify this, cold start test sets of different
sparsity levels were extracted from the full test set. The “Sparsity
Level= 1” group refers to cold start products that have no historical
feedback in the training set and only appear once in the test set. The
“Sparsity Level= 10” group refers to cold start products that have no
more than 10 feedbacks in the dataset. All of the baseline models were
tested, and results are listed in Table 3.

The results further demonstrate that through a better exploitation of
visual and textual content, Deep-MINE outperformed all the baseline
models with remarkable advantages. In particular, in the “Sparsity
Level= 1” group, the AUC of Deep-MINE surpassed that of the best
baseline model (i.e., CKE) by 30.13% (0.5001 vs 0.3843). As feedbacks
for each product increased, the recommendation performances im-
proved for all models. CKE performed the best in the baseline models as
it takes account of various contents as well. As expected, BPRMF per-
formed the worst as it only considers feedback data.

4.3.4. Effect of incorporating cognitive styles
To further examine the impact of incorporating the heterogeneity in
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user cognitive styles and demonstrate the reliability of the cognitive
style values obtained by Deep-MINE, we proposed a series of initial
cognitive indexes as benchmark indexes and compared their re-
commendation performances with the Deep-MINE model. Higher re-
commendation performance could imply, to some extent, that the
corresponding cognitive index configuration reflects a more accurate
representation of the user's cognition characteristics.

The benchmark indexes include: (1) No cognitive styles. This con-
figuration represents that cognitive style information is not considered
in the model and recommendation. (2) Uniform cognitive styles.
Uniform cognitive styles assume the cognitive weights of all consumers
on the three pieces of information, i.e., descriptions, reviews and
images, are the same, which is [1/3, 1/3, 1/3]. This index assumes that
not only the cognitive styles of all consumers are homogenous, but also
the consumers' inclinations to the three different forms of information
representations are indifferent. (3) Ordered cognitive styles. This index
assumes all consumers have the same priority order on different in-
formation formats, i.e., with weight [3/6] being high priority, [2/6]
being medium priority and [1/6] being low priority, thus generating 6
combinations of cognitive style indexes, e.g., [high-image, medium-
description, low-review], [high-description, medium-review, low-
image], etc. (4) Random cognitive styles. A randomization could ensure
that each consumer has a differentiated cognition vector. This is a
general treatment to represent consumer's cognition heterogeneity
without further information. (5) Average cognitive styles. In this con-
figuration, the cognitive style of each consumer is derived using our
proposed model. Then the average cognitive style values across all
consumers are calculated and used as the unified cognitive style.

The comparison results on the hit ratio and AUC are shown in
Fig. 9(a) and (b), and clearly the proposed Deep-MINE showed the best
performance. Further findings can also be derived. First, all the models
equipped with cognitive styles significantly outperformed the model
without cognitive styles, further emphasizing the power of integrating

cognitive styles into personalized recommendation. Second, different
cognitive style distributions on three information representations did
significantly impact the recommendation performance, which demon-
strates the importance of detecting appropriate cognitive styles of
consumers. Third, the Deep-MINE model (which treats consumer's
cognitive style in an individualized manner) outperformed other
models only considering unified cognitive style across all consumers,
showing the strength of cognitive style personalization. It is also worth
mentioning that, though configuration (5) of Average Cognitive Styles
to a large extent incorporates the learnt cognitive styles of all con-
sumers, the final performance was weakened due to the average
treatment compared with the Deep-MINE model.

To visualize the cognition values, an extracted sample of ten con-
sumers' cognition value distributions from the Women's Dresses dataset
is shown in Fig. 9(c), in which we observed that consumers 1 and 8
cared much more about images and reviews than descriptions; con-
sumers 2, 3, 5 and 9 were more inclined to descriptions; consumer 6
valued reviews more; consumer 7 valued images more; and consumers
4 and 10 paid roughly equal attention to all three views. Such ob-
servations further confirm the prevalence of cognition heterogeneity,
and highlight the significance of treating multiple information sources
differently for different types of consumers in recommendations. For
instance, from the perspective of online shopping platform, platform
managers could consider a personalized webpage layout design that is
consistent with the consumer's individualized cognitive style to provide
a better shopping experience, which is also supported by Engin and
Vetschera [11].

4.3.5. Sensitivity analysis
As mentioned in Section 4.2, the node numbers of the latent layer

for three auto-encoders were all set to 100. To further prove the ro-
bustness, we also conducted experiments by varying the latent node
number for the image auto-encoder (Table 4). It was observed that the
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performance remained stable across different numbers, and more image
nodes did not necessarily lead to a better performance, possibly because
the learning process can ensure an effective representation and in-
tegration of all information through back propagation to minimize the
objective function, regardless of the initial hyperparameter settings.

A 6-layer convolutional auto-encoder was designed in this study to
represent information on product images, which is consistent with [56].
Some trial experiments were also conducted to help determine the
number of layers. Specifically, a subset of product images was selected
from the training set, and networks with different number of layers
were trained to achieve their local optimum. To compare their relative
performance, we measured their loss function values (i.e., as defined in
Section 3.2.1 denoted by L1, which consists of reconstruction error
terms and regularization terms for the weight matrix). It is obvious
from Table 5 that the 6-layer structure had a better performance than
the 4-layer and 8-layer networks.

4.3.6. Visualization of the recommendation results
To better illustrate the recommendation performance of Deep-

MINE, four consumers in the Women's Dresses data were randomly
selected with the top-5 recommendation image results generated by
Deep-MINE, BPRMF, CDL, VBPR and CKE, respectively (see Fig. 10).
The first row is the dresses that the consumers previously purchased,
reflecting the consumers' historical tastes. The other five rows are the
top-5 dresses recommended by Deep-MINE, BPRMF, CDL, VBPR and
CKE, respectively. It can be intuitively observed that Deep-MINE had
more recommendation variety compared with the baseline models.
Concretely, BPRMF and VBPR tended to recommend the most popular
products without much personalization for different consumers, i.e.,
3–4 popular dresses could be repeatedly found in the recommendation
results for the four consumers. In addition, Deep-MINE recommended
more relevant dresses based on the tastes reflected in the consumers'
historical purchases, such as color (e.g., dark or colorful), size (e.g.,
long or short) and style (e.g., casual or formal). Although CKE and CDL
showed some variety, they were not very consistent in taste with con-
sumers' previous purchases.

5. Conclusion and future work

This study proposed a personalized recommendation model with
multi-view information integration, i.e., Deep-MINE, which organically
and comprehensively utilizes multiple sources of product content and
considers users' heterogeneity in cognitive styles. A unified deep neural
network was designed as an end-to-end model composed of three main
parts: multi-view information representation, cognition treatment, and
information integration, by which preferable recommendation perfor-
mances can be achieved. Extensive data experiments revealed the better
of Deep-MINE in comparison to the baseline models. This study also
shed light on the potential of a data-driven view of cognitive style.

Table 3
AUC performance on test sets of different sparsity levels.

Sparsity Level 1 2 3 4 5 6 7 8 9 10

BPRMF 0.3020 0.3368 0.3672 0.3950 0.4260 0.5732 0.6047 0.6275 0.6454 0.6587
CDL 0.3213 0.3601 0.3870 0.4307 0.4632 0.6245 0.6543 0.6751 0.6924 0.7046
VBPR 0.1441 0.2276 0.3066 0.3650 0.4148 0.6245 0.6520 0.6721 0.6910 0.7032
CKE 0.3843 0.4214 0.4484 0.4709 0.4940 0.6193 0.6484 0.6693 0.6864 0.6966
Deep-MINE 0.5001 0.5014 0.5377 0.5623 0.5799 0.6887 0.7085 0.7252 0.7390 0.7484
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Table 4
Model performance with different node numbers for images.

Image auto-encoder AUC HIT@50 HIT@100 HIT@150 HIT@200

50-Node 0.8564 0.2816 0.3986 0.4742 0.5345
100-Node 0.8564 0.2936 0.4009 0.4695 0.5250
200-Node 0.8554 0.2826 0.3901 0.4631 0.5198
300-Node 0.8526 0.2821 0.3941 0.4685 0.5227

Table 5
Loss function values with different layers of image auto-encoder.

Image auto-encoder 4-Layer 6-Layer 8-Layer

Loss function value 0.0247 0.0137 0.0567
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Future work could be extended in the following directions. First,
this study only considered a single kind of implicit feedback, namely,
consumer purchase behavior. Some other feedback, such as product
returns, consumer browsing and clicking behavior, provides more de-
tailed information about consumer preferences and thus could be fur-
ther exploited in the design of recommender systems. For instance, the
information representation part in the Deep-MINE model could be en-
riched by integrating such knowledge. Furthermore, this study in-
corporated the heterogeneity of cognitive style into a recommender
system and proposed an integrated deep learning framework to solve
the problem. Future research may consider representing user's cognitive
styles from the perspective of other dimensions in addition to the
Verbal-Imagery dimension considered in this study, to enrich the
measurement of cognitive styles.
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